Factorization Theorem

Theorem 1.1 The joint pmf/pdf of $X_{1}, X_{2}, \ldots, X_{n}$ is said to satisfy the factorization criterion in terms of the statistic $T=t(\mathbf{X})$ if and only if it can be expressed as

$$
f_{\mathbf{X}}(\mathbf{x}, \theta)=g(t(\mathbf{x}), \theta) h(\mathbf{x})
$$

Note that $g(t(\mathbf{x}), \theta)$ depends on \mathbf{x} only through $t(\mathbf{x})$ and that $h(\mathbf{x})$ is independent of θ.
Proof 1.1
(\Leftarrow)
Suppose that

$$
\begin{aligned}
f_{\mathbf{X}}(\mathbf{x}, \theta) & =P(\mathbf{X}=\mathbf{x}) \\
& =p_{\mathbf{X}}(\mathbf{x})
\end{aligned}
$$

and assume that $p_{\mathbf{X}}(\mathbf{x})=g(t(\mathbf{x}), \theta) h(\mathbf{x})$. Then

$$
\begin{array}{rlr}
\mathrm{P}\left(T=t_{0}\right) & =\sum_{t(\mathbf{x})=t_{0}} \mathrm{P}(\mathbf{X}=\mathbf{x}) & \text { summing over those } \mathbf{x} \text { for which } t(\mathbf{x})=t_{0} \\
& =\sum_{t(\mathbf{x})=t_{0}} g(t(\mathbf{x}), \theta) h(\mathbf{x}) & \text { by factorization (assumed) } \\
& =g\left(t_{0}, \theta\right) \sum_{t(\mathbf{x})=t_{0}} h(\mathbf{x}) & \text { since } t(\mathbf{x})=t_{0}
\end{array}
$$

The conditional distribution of \mathbf{X} given $T=t_{0}$ is

$$
\begin{aligned}
P\left(\mathbf{X}=\mathbf{x} \mid T=t_{0}\right) & =\frac{P\left(\mathbf{X}=\mathbf{x} \cap T=t_{0}\right)}{P\left(T=t_{0}\right)} \\
& =\left\{\begin{array}{cc}
\frac{P(\mathbf{X}=\mathbf{x})}{P\left(T=t_{0}\right)} & \text { if } t(\mathbf{x})=t_{0} \\
0 & \text { else }
\end{array}\right.
\end{aligned}
$$

If $t(\mathbf{x})=t_{0}$ then

$$
\begin{aligned}
P\left(\mathbf{X}=\mathbf{x} \mid T=t_{0}\right) & =\frac{g\left(t_{0}, \theta\right) h(\mathbf{x})}{g\left(t_{0}, \theta\right) \sum_{t(\mathbf{x})=t_{0}} h(\mathbf{x})} \\
& =\frac{h(\mathbf{x})}{\sum_{t(\mathbf{x})=t_{0}} h(\mathbf{x})}
\end{aligned}
$$

which is independent of θ. So, T is sufficient for θ.
(\Rightarrow)
Now suppose that T is sufficient for θ. Then, by definition, $\mathrm{P}\left(\mathbf{X}=\mathbf{x} \mid T=t_{0}\right)$ is independent of θ. If we let $g\left(t_{0}, \theta\right)=\mathrm{P}\left(T(\mathbf{X})=t_{0}\right)$ and $h(\mathbf{x})=\mathrm{P}\left(\mathbf{X}=\mathbf{x} \mid T\left(\mathbf{x}=t_{0}\right)\right.$ then

$$
\begin{aligned}
\mathrm{P}(\mathbf{X}=\mathbf{x} \mid \theta) & =\mathrm{P}\left(\mathbf{X}=\mathbf{x}, T(\mathbf{X})=t_{0}\right) \\
& =\mathrm{P}\left(\mathbf{X}=\mathbf{x} \mid T(\mathbf{X})=t_{0}\right) \mathrm{P}\left(T(\mathbf{X})=t_{0} \mid \theta\right) \\
& =h(\mathbf{x}) g\left(t_{0}, \theta\right)
\end{aligned}
$$

Thus, if we can factor $f(\mathbf{x}, \theta)$, then $T(\mathbf{X})=t(\mathbf{X})$ is a sufficient statistic.

