Theorem 1.1 The joint pmf/pdf of X_1, X_2, \ldots, X_n is said to satisfy the factorization criterion in terms of the statistic $T = t(\mathbf{X})$ if and only if it can be expressed as

$$f_{\mathbf{X}}(\mathbf{x}, \theta) = g(t(\mathbf{x}), \theta) h(\mathbf{x})$$

Note that $g(t(\mathbf{x}), \theta)$ depends on \mathbf{x} only through $t(\mathbf{x})$ and that $h(\mathbf{x})$ is independent of θ .

Proof 1.1

(⇐)

Suppose that

$$f_{\mathbf{X}}(\mathbf{x}, \theta) = P(\mathbf{X} = \mathbf{x})$$
$$= p_{\mathbf{X}}(\mathbf{x})$$

and assume that $p_{\mathbf{X}}(\mathbf{x}) = g(t(\mathbf{x}), \theta) h(\mathbf{x})$. Then

$$P(T = t_0) = \sum_{t(\mathbf{x})=t_0} P(\mathbf{X} = \mathbf{x})$$
 summing over those \mathbf{x} for which $t(\mathbf{x}) = t_0$
$$= \sum_{t(\mathbf{x})=t_0} g(t(\mathbf{x}), \theta) h(\mathbf{x})$$
 by factorization (assumed)
$$= g(t_0, \theta) \sum_{t(\mathbf{x})=t_0} h(\mathbf{x})$$
 since $t(\mathbf{x}) = t_0$

The conditional distribution of \mathbf{X} given $T = t_0$ is

$$P(\mathbf{X} = \mathbf{x} | T = t_0) = \frac{P(\mathbf{X} = \mathbf{x} \cap T = t_0)}{P(T = t_0)}$$
$$= \begin{cases} \frac{P(\mathbf{X} = \mathbf{x})}{P(T = t_0)} & \text{if } t(\mathbf{x}) = t_0 \\ 0 & \text{else} \end{cases}$$

If $t(\mathbf{x}) = t_0$ then

$$P(\mathbf{X} = \mathbf{x}|T = t_0) = \frac{g(t_0, \theta)h(\mathbf{x})}{g(t_0, \theta)\sum_{t(\mathbf{x})=t_0}h(\mathbf{x})}$$
$$= \frac{h(\mathbf{x})}{\sum_{t(\mathbf{x})=t_0}h(\mathbf{x})}$$

which is independent of θ . So, T is sufficient for θ .

 (\Rightarrow)

Now suppose that T is sufficient for θ . Then, by definition, $P(\mathbf{X} = \mathbf{x}|T = t_0)$ is independent of θ . If we let $g(t_0, \theta) = P(T(\mathbf{X}) = t_0)$ and $h(\mathbf{x}) = P(\mathbf{X} = \mathbf{x}|T(\mathbf{x} = t_0)$ then

$$P(\mathbf{X} = \mathbf{x}|\theta) = P(\mathbf{X} = \mathbf{x}, T(\mathbf{X}) = t_0)$$

= $P(\mathbf{X} = \mathbf{x}|T(\mathbf{X}) = t_0)P(T(\mathbf{X}) = t_0|\theta)$
= $h(\mathbf{x})g(t_0, \theta)$

Thus, if we can factor $f(\mathbf{x}, \theta)$, then $T(\mathbf{X}) = t(\mathbf{X})$ is a sufficient statistic.